影响纸箱抗压强度的因素


影响纸箱抗压强度的因素

        影响纸箱抗压强度的因素有很多,大致可归纳为边压强度、结构尺寸、加工工艺、水份及装箱后的堆码运输方式等。由于各因素的交互影响,常常导致我们对抗压强度的预测产生一定偏差。同时,纸箱厂也往往因为对这些因素认识不足,在设计、印刷及后加工过程中处理不当,造成巨大的成本浪费及客户投诉。因此,弄清这些因素的影响规律是十分必要的。

瓦楞纸板的边压强度

       边压强度又叫垂直抗压强度,是对瓦楞纸板试样以垂直方向施加压力,施压过程中纸板所能承受的最大力即为纸箱的边压强度。纸箱抗压强度的高低主要取决于纸板边压强度,而边压强度则与组成瓦楞纸板的各层原纸的横向环压强度、纸板的坑型组合及纸板的粘合强度有关。

        瓦楞纸板边压强度主要与各层原纸的横向环压强度有关,一般来讲,克重较高、造纸材料质量较好及紧度较高的原纸,其横向环压强度也相应越高。但并非克重高的原纸环压就一定比克重低的原纸高。以箱板纸为例,进口牛皮横向环压指数可达到12N·m/g以上,而内地一些小型造纸厂生产的箱板纸仅为8N·m/g,相差了30个百分点。也就是说克重为175g/m2的进口牛卡,其环压强度相当于260g/m2。因此,鉴定纸箱保护性能的好坏,不能以纸箱用纸克重而论。

        瓦楞纸板的结构设计是很科学的,其瓦楞的楞形就如一个个连接的小小拱形门,排成一排,相互支撑,形成三角结构体,强而有力,而且平面上也能承受一定压力,富有弹性,缓冲力强,能起到防震和保护商品的作用。瓦楞形状依圆弧半径不同一般分为U形、V形和UV形三种。U型的顶峰圆弧半径较大,呈圆弧形,如B楞、C楞;V型的波峰半径较小,且尖,如A楞;UV型介于两者之间,如AB楞。据试验表明,V形楞在受压初期歪斜度较小,但超过最高点,便迅速地破坏,而U形楞吸收的能量较高,当压力消除后,仍能恢复原状,富有弹性,但耐压强度不高。另外V形楞节省瓦楞纸,粘合剂耗量较少,但加工时易出现高低楞,瓦楞辊磨损较快。UV形楞是结合U形和V形的特点,目前得到广泛的采用。

        瓦楞纸板的各种坑型及其组合﹐单就单坑纸板来说,一般A坑纸箱抗压强度最高﹐但易受到损坏;B坑强度较差,但稳定性好;C坑抗压力及稳定性居中。A型瓦楞具有较好的防震缓冲性,另外垂直耐压强度也较高;B型瓦楞的峰端较尖,粘合面较窄,其瓦高度较小,可以节省瓦楞原纸,其平面抗压能力超过A型瓦楞,B型瓦楞单位长度内瓦楞数较多,与面纸有较多的支承点,因而不易变形,且表面较平。在印刷时有较强抗压能力,可得到良好印刷效果。C型瓦楞兼有A型和B型瓦楞的特点,它的防震性能与A型相近,平面抗压能力接近B型瓦楞。E型瓦楞是最细的一种瓦楞,单位长度内的瓦楞数目最多,能承受较大的平面压力,可适应胶版印刷需要,能在包装面上印出质量较高的图文,这种瓦楞纸板和硬纸板强度差不多。

表一、三种楞型比较表

注:1、平面压力是指垂直于瓦楞纸板平面的压力。

2、垂直压力是指与瓦楞方向一致的压力,平行压力是指垂直于瓦楞方向的压力。

3、“1”代表最强。

        根据上述不同类型瓦楞的不同特点,单瓦楞纸箱用A型和C型为宜,双瓦楞纸箱用A、B型,B、C型相结合最为理想,接近表面的用B型,能起到抗冲击力较强的作用,接近内层的用A型或C型弹性足、缓冲力强,采有用AB型或BC型结合,使纸箱的物理性能发挥两个优越性。中包装宜选用C型楞,E型瓦楞代替厚纸板,用于小包装。最近几年,国外又发展有F楞、G楞等比E楞更小的瓦楞,同时也开发出了K楞等特大瓦楞

        除此之外,纸板粘合强度及坑形挺度也对纸板边压强度造成一定影响。坑形越挺,粘合越好,边压强度越高。存在塌坑、倒楞、脱胶等缺陷的纸板强度,其边压强度会得到不同程度的削弱。

纸箱长宽高尺寸及比例

        大量的数据分析表明,纸箱抗压强度与纸箱周长、纸箱高度及纸箱长宽比存在一定关系。纸箱周长越长,抗压强度越高。且纸箱周长与抗压强度存在一定的换算关系。

        箱高在10-35厘米时,抗压随高度增加而稍有下降。箱高在35-65厘米区间时﹐其抗压强度几乎不变。箱高大于65厘米之间时,抗压随高度增加而降低。主要原因是高度增加,其不稳定性也会相应增加。



        一般来讲,纸箱长宽比在1~1.8的范围内﹐长宽比对抗压强度的影响仅为±5%。其中长宽比RL=1.2~1.5时,纸箱的抗压值最高。纸箱长宽比为2﹕1时,抗压强度下降约20%,因此设计纸箱时长宽比不宜超过2,否则会造成成本浪费。(见图1)

堆码时间及堆码方式

        纸箱抗压强度随堆码时间的延长而降低,这种现象称为疲劳现象。试验表明,在长期载荷的作用下,只要经历一个月的时间,纸箱的抗压强度就会下降30%,在经历一年后,其抗压强度就只有初始值的50%。在设计纸箱材质时,对流通时间较长的纸箱应提高其安全系数。

       纸箱堆码方式也对纸箱的抗压强度产生一定影响。纸箱竖坑方向承受的压力大大超过横坑方向,纸箱堆码时应保持竖坑方向受压。从试验结果来看,纸箱的箱角部位承受的压力最高,离箱角越远,承压力越低。(见图2)因此纸箱在堆码时应尽量保持箱角与箱角对齐叠放。

        常见的纸箱堆码方式有三种:砖砌式、上下平行式及风车式(见图3)。此三种方式中,上下平行式堆码有利于保持箱角充分受压,因而最为合理。而砖砌式及风车式则应尽量避免。


纸箱开孔方式

        部分纸箱上有通气孔手挽孔等,这些开孔也会对纸箱的抗压造成重大影响。试验表明,开孔越大,抗压强度减损越大;开孔离顶、底部越近,离中心往左右越远,抗压强度越低;开对称孔比开不对称孔的抗压强度减损要小。

        一般来说,侧面各1个手挽使纸箱的抗压强度降低20%,两侧面及正面各1个手挽使纸箱的抗压强度降低30%。有些工厂在纸箱内壁开孔部位贴一层加强卡,这样不仅可以降低开孔给抗压强度造成的影响,同时还可以防止手挽部位受力时发生破损,可谓一举两得。

纸箱印刷工艺

        纸箱印刷工艺对抗压强度的影响也不容忽视。印刷面积、印刷形状及印刷位置对纸箱抗压强度的影响程度各不相同。总的来说,印刷面积愈大,纸箱抗压强度的降低比率也愈大。满版实地,块状及长条状印刷对抗压强度的影响比较大,设计时应尽量避免。就纸箱印刷位置而言,印刷在正侧唛中间部位较边缘部位的抗压高。(见图4)

        大量试验数据显示,单色印刷使纸箱的抗压强度降低6~8%,双色及三色印刷使纸箱的抗压强度降低10-15%,四色套印及整版面实地印刷使纸箱抗压强度下降约20%。对于多色印刷,采取先印刷,再覆面模切的预印加工工艺可以有效降低纸箱因印刷而造成抗压强度减损的幅度。



模切工艺

        纸箱在进行模切加工过程中,由于受到外部重压,纸箱的坑形会受到不同程度的损害,因而抗压强度也会下降。比较而言,平压平模切对抗压影响较小,圆压圆及圆压平模切对抗压影响则大一些。譬如与印刷机连动的弧形啤切,可导致纸箱抗压强度减少25%以上。


纸箱内衬件设计

        许多纸箱的内部还包括EPE、纸塑等内衬件,纸箱内装入内衬件后,其抗压强度会提高。但内衬件的设计对抗压提高的幅度也不一样。内衬件设计成直角比设计成圆角更有利于提高抗压强度。(见图5)

纸箱堆放的温湿环境

       纸箱对温湿环境比较敏感,温度对纸箱的抗压强度影响较小,但湿度则非常明显。随着温度和湿度的增加,纸箱的抗压强度呈明显下降趋势,在温度30℃、湿度80%RH时开始急剧下降,当温度为45℃、湿度95%RH时,抗压强度下降幅度可达60%以上。

©2012-2014  s8p.cn  包装地带网

备案号:粤ICP备12015855号-2